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UNIT-V 

The inductive inference may be termed as the logic of drawing statistically valid 

conclusions about the population characteristics on the basis of a sample drawn 

from it in a scientific manner. We know the utility of sample method over complete 

enumeration (census) method and described the various sampling techniques of 

obtaining representative samples from the population. In this, we shall develop the 

technique which enables us to generalize the results of the sample to the 

population; to find how far these generalizations are valid, and also to estimate the 

population parameters along with the degree of confidence. The answers to these 

and many other related problems are provided by a very important branch of 

statistics, known as Statistical Inference. 

 Parameter The statistical constant of the population like mean (μ), variance(σ2
), 

skewness (ß1), kurtosis (ß2), moments (μr), correlation coefficient (ῤ) etc. are 

known as parameters. Obviously, parameters are function of the population values. 

Generally, the population parameters are unknown and their estimates provided by 

the appropriate sample statistics are used. 

Parameter Space: Let us consider a random variable X with probability density 

function P.d.f f(x,θ). In most common applications, though not always, the 

functional form of the population distribution is assumed to be known except for 

the value of some unknown parameters θ which may take any value on a set ϴ. 

This is expressed by writing the p.d.f in the form f(x,θ),θ ϵ ϴ.The set ϴ, which is 

the set of all possible values of θ is called the parameter space. 
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Sampling distribution of a statistic:  

sampling distribution describes the manner in which a statistic or a function of 

statistic which is/are a functions of the random sample variate values x1,x2,x3. . . 

,xn will vary from one sample to another of the sample size 

e.g  t, Z and F distributions 

If we draw a sample of size n from a given finite population of size N , then total 

number of possible sample is  

Ncn = NꞋ/nꞋ(N-n) Ꞌ =k(say)  

For each of these k samples we can compute some statistic t=t(x1,x2,x3. . . ,xn) in 

the particular the mean(bar) the variance(s
2
) etc as given below 

 

Sample No.   Statistics 

                           t                  x(bar)                 s
2
 

1                       t1       x1(bar)  s1
2
 

2                       t2 x2(bar)  s2
2
 

3                       t3                   x3(bar)               s3
2
 

. .   .  . 

.  .   .  . 

.  .   .  . 

K                     tk    xk(bar)                sk
2
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The set of the values of the statistic so obtained, one for each sample, constitutes 

what is called sampling distribution of the statistics.  Statistics t may be regarded 

random variable which can take the values t1,t2,t3,…tk and we can compute the 

various statistical constants like mean, variance, skewness, kurtosis for its 

distribution. 

For e.g the mean and variance of the sampling distribution of the statistics t is 

given by 

t (bar) =1/k(t1+t2+t3…tk)=1/k∑ti 

and var(t) =1/k[(t1-t)
2
+ k(t2-t)

2
+ k(t3-t)

2+…+ k[(tk-t)]=1/k∑(ti-t(bar)]=0 

 

Types of Estimation 

Point estimation and Interval estimation: A particular value of a statistic which is 

used to estimate a given parameter is known as a point estimate or estimator of the 

parameter. Also instead of estimating a single value of a parameter from sample 

values, a range t1, t2 of numbers, which constitute an interval, determined with the 

help of sample values and supposed to include the parameter θ with certain 

confidence level γ=1-α is known as confidence interval. t1 and t2 (t1<t2)are called 

the lower and upper limits of the interval estimate.  

Estimator and Estimate: A known function T =t(x1,x2,x3. . . ,xn) of the observable 

variates of a random sample x1,x2,x3. . . ,xn whose values are used to obtain the 

estimate of a parameter θ or a function of θ, is called an estimator. An estimator is 

itself a random variable. If x1,x2,x3. . . ,xn are the values of the random sample X1, 

X2, X3,…, Xn, the value t (x1,x2,x3. . . ,xn) of the estimator Tn is known as an 
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estimate of the parameter θ. For example 1/n∑Xi (i=1,2,3…,n)is an estimator 

whereas x(Bar) = 1/n∑xi is an estimate. 

Requirements of a good estimator. 

A good estimator is one which is close to the true value of the parameter as 

possible. The following are some of the criteria which should be satisfied by a 

good estimator. 

(i) Unbiased (ii) Consistency (iii) Efficiency (iv) Sufficiency 

Unbiased: An estimator Tn =T(x1,x2,x3. . . ,xn) is said to be an unbiased 

estimator of γ(θ) if E(Tn) = γ(θ), for all θ ɛ Ɵ 

We have seen in sampling from a population with mean µ and variance σ2
, E(x) 

= µ and E(s
2) ≠ σ2

but E(s
2
)= σ2

. Hence there is a reason to prefer 

S
2
 =1/n-1

∑ (x-x)2
 ,to sample variance s

2
 =1/n

∑ (x-x)2 

 

Example: x1, x2, x3. . . ,xn is a random sample from a normal population N(μ, 

1).Show that t=1/n∑xi2
 is an unbiased estimator of μ2

 +1. 

Sol. We have E(xi) =μ, V(xi) =1 ;i=1,2,3,…, n 

Now E(xi
2
)= V(xi)+{ E(xi)}

2
 = 1+μ2

 

E(t) = E(1/n∑ xi
2) =1/n∑E( xi

2) =1/n∑(1+μ2
) =1+μ2 

Hence t is an unbiased estimator of 1+μ2
. 
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(ii) Consistency. A statistic t=tn =t(x1,x2,x3. . . ,xn) based on a sample of size n 

is said to be a consistent estimator of the parameter θ if it converges in 

probability to θ, if tn→ θ, as n→∞. 

Symbolically, 

Lim P(tn→ θ)=1 

n→ θ 

 

For any distribution, sample mean x(bar) is a consistent estimator of the 

population mean, sample proportion ‘p’ is a consistent estimator of 

population proportion and sample variance s
2
 is a consistent estimator of 

population variance σ2
. 

Remarks.1. A consistent estimator need not be biased. For example, the 

sample variance s
2 
is a consistent estimator of the population variance but 

it is not unbiased. 

2. Obviously, consistency is a property concerning the behaviour of an 

estimator for indefinitely large values of sample size n, as n→∞.It does 

not take into consideration the behaviour of the statistic for finite values 

of n. 

Efficiency. An unbiased estimator Tn is said to be efficient than any other 

estimator Tn⃰ of ƪ(θ) if and only if 

 V(Tn) < V (Tn ⃰ ) 

Also relative efficiency of Tn as compared to Tn⃰ is given as 

              R.E = V (Tn ⃰ )/ V(Tn) 

Crammer gave the term efficient estimator to mean a minimum variance 

unbiased estimator (MVUE) or best unbiased estimator. Hence, MVU 

estimator is unbiased and also among the class of unbiased estimators it 

possesses minimum variance. 
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A MVU estimator is unique in the sense that V (Tn⃰ ) = V(Tn)    Tn =Tn⃰ 

 

Example. A random sample (X1, X2, X3, X4, X5) of size 5 is drawn from 

a Normal population with unknown mean μ. Consider the following 

estimators. 

(i) t1=X1+x2+x3+x4+x5/5, (ii) t2=X1+X2 /2+X3, (iii) t3 = 2X1+X2/3.  State 

give reasons, the estimator which is best among t1, t2 and t3.  

Sol: we are given  

E(Xi) = μ, var(Xi) =σ2
,(say); Cov(xi,xj) = 0, (i≠j=1,2,3,…,n)…(1) 

Using eq. no.(1), we get 

Var(t1)= 1/25{var(X1)+ var (X2)+ var(X3)+ var (X4)+ var(X5)}=1/5σ2
 

Var(t2)= 1/4{var(X1)+ var (X2)}+ var(X3) =1/2 σ2
+ σ2

= 3/2 σ2
 

                  var(t3)= 1/9{4var(X1)+ var (X2)} =1/9(4σ2
+ σ2

) =5/9 σ2 

           
Since V(t1) is least, t1 is the best estimator (in case of least variance. 

Sufficiency. This is the last property that a good estimator should posses. 

A statistic t = t(x1,x2,x3,. . . ,xn) is said to be a sufficient estimator of 

parameter θ if it contains all the information in the sample regarding the 

parameter. In other words, a sufficient statistic utilizes all the information 

that a given sample can furnish about the parameter. If t = t(x1, x2, x3. . . , 

xn) is a statistic based on a random sample of size from a population with 

probability function or pdf (x, θ) then it is a sufficient estimator of θ if the 

conditional distribution P[x1∩ x2∩x3∩,…,∩xn/t = k] does not depend on 

θ. 

The sample mean x(bar) is sufficient estimator of population mean µ and 

sample proportion ‘p’ is a sufficient estimator of population proportion P. 

 

Properties of sufficient estimators: 
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1. If a sufficient estimator exists for some parameter then, it is also the 

most efficient estimator. 

2. It is always consistent. 

3. It may or may not be biased. 

4. A minimum variance unbiased estimator (M.V.U.E) for a parameter 

exists if and only if there exists a sufficient estimator for it. 

 

Factorization Theorem (Neymann). The necessary and sufficient 

condition for a distribution to admit sufficient statistic is provided by the  

‘factorization theorem’ due to Neymann. 

Statement. T =t(x) is sufficient for θ if and only if the joint density 

function L (say), of the sample values can be expressed in the form: 

   

   L =gθ [t(x)].h(x) 

 

Where as indicated gθ [t(x)] depends on θ and x only through the value of 

t(x) and h(x) is independent of θ. 

 

Example. Let x1, x2, x3. . . ,xn be a random sample from a uniform 

population on [0, θ]. Find a sufficient estimator of θ. 

Sol. We have 

   L = ∏f(xi, θ) =1/ θn; 0<xi< θ….(1) 

 

If t=max (x1, x2, x3. . . ,xn) =xn, then p.d.f of t is given by 

 

g (t, θ) =n{F(xn)}
n-1

.f(x(n)) 

We have F(x) = P(X≤x) = ∫x
 0 f(x, θ)dx =∫x

 0  1/θ dx =x/θ 
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g (t, θ) =n{x(n)/θ}n-1(1/θ)=n/θn
[x(n)]

n-1
 

 

Rewriting equation 1, we have  

   

L=n[x(n)]
n-1

/ θn
 .1/ n[x(n)]

n-1
 =g(t,θ). h(x1,x2,x3. . . ,xn) 

Hence by Factorization Neymann criterion, the statistic t=x(n), is 

sufficient estimator for θ. 

 

Method of maximum likelihood estimation. 

Maximum likelihood principle is due a R.A Fisher in 1921. 

Let X1, X2, X3,…, Xn be n independent observations from f(x;θ) where θ 

is a single unknown parameter. The joint probability density function of 

the sample is called likelihood function (LF) and is written as 

 L(x/θ) = f(x1, θ) f(x2, θ) f(x3, θ)… f(xn, θ) 

According to maximum likelihood principle, one should take the value of 

estimator θ within the admissible range of θ which makes L(x/θ) 

maximum. For this, the method of maxima-minima is used. If L(x/θ) is 

differentiable twice i.e if the first and second derivative of L(x/θ) exists, 

put L
\ (x/θ) = 0 and solve for θ. Also, for maxima check that L\\(x/θ) is 

negative for a value of θ obtained by L
\(x/θ). If so, solution of L(x/θ) 

provides the maximum likelihood estimate of θ. In practice it is better to 

take logarithm of L(x/θ) and then differentiate and solve it. This makes 

estimation process easier. 

 If θ is a K dimensional parametric vector, i.e θ =(θ1,θ2,θ3,…,θk), then 

the estimator (θ^
1,θ^

2,θ^
3,…,θ^

k), which maximize L(x/θ1,θ2,θ3,…,θk), can 

be obtained by differentiating partially the Log{ L(x/θ1,θ2,θ3,…,θk), with 
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respect to θ1,θ2,θ3,…,θk respectively and equating them to zero. The 

solution of k equations provides the estimates of θ1,θ2,θ3,…,θk. 

 

Notationally, 

 ə/əθ1 {Log L(x/θ1,θ2,θ3,…,θk)}=0 

 ə/əθ2 {Log L(x/θ1,θ2,θ3,…,θk)}=0 

. 

. 

. ə/əθk {Log L(x/θ1,θ2,θ3,…,θk)}=0 

In this we get k equations in k unknowns. These equations are often 

called the likelihood equations. Solving these equations one gets the 

maximum likelihood estimates of θ1, θ2, θ3,…, θk. To show that θ^, 
the k-

dimensional vector of estimates provides the supremum of L(x/θ), it is 

enough to show that the matrix  

(ə2
Log L/əθi əθj)θ=θ^ 

is negative definite. 

 

Example: If X is a poisson variate with parameter μ, find the maximum 

likelihood estimate of μ. 

 

Ans.  P(x;μ)= e-μμx
/xꜝ  

for x=0,1,2,…n. 

The likelihood function 

L(xꜝ/ μ)=∏ e-μμx
i/xiꜝ 

for i=1,2,3,…n 

Logl =∑Logee
-μ+∑xilogμ-∑loge(xiꜝ) 

=-nμ+∑xilogμ-∑loge(xiꜝ) 

əLog L/əμ=-n+∑xi /μ
^
-0=0 
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  ∑xi /μ
^
= n 

or μ^=∑xi /n= x(bar) 

Sample mean is the maximum likelihood estimate of μ. 

Methods of moments:  

let x1, x2, x3,…,xn be n random samples for distribution function fθ(x))/pθ(x)where θ 

is population parameters or it can be written as  

f(θ1,θ2,θ3,…,θk) where θ1,θ2,θ3,…,θk ε Ɵ 

then by the method of moments 

m
/
r=µ

/
r 

where 

m
/
r are the sample moments and µ/r are the population moments.. 

Example: if x˷U(0, θ). Obtain estimate of θ by moments method. 

Sol.  x˷U(0, θ)  

f(x,θ)=1/θ; 0˂x˂θ 

µ
/
r = m

/
r 

µ
/
1 = m

/1…(1) 

µ
/1 = E(x)= = ∫θ

 0x 1/θ dx=1/θ[x2
/2]

θ
0  = θ2/2θ= θ/2 

from eq.(1)  

θ/2 =1/n∑xi 

θ/2 = x(bar) 

or θ^
 = 2(x bar)  
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